Leaf Dynamics of Panicum maximum under Future Climatic Changes
نویسندگان
چکیده
Panicum maximum Jacq. 'Mombaça' (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day(-1)) and leaf elongation rate (LER, cm day(-1)) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.
منابع مشابه
Adaptation of Leaf Water Relations to Climatic and Habitat Water Availability
Successful management of forest systems requires a deeper understanding of the role of ecophysiological traits in enabling adaptation to high temperature and water deficit under current and anticipated changes in climate. A key attribute of leaf water relations is the water potential at zero turgor (πtlp), because it defines the operating water potentials over which plants actively control grow...
متن کاملStatistical Downscaling HadCM3 Model for Detection and Perdiction of Seasonal Climatic Variations (Case Study: Khabr Rangeland, Kerman, Iran)
Rangelands are one of the most vulnerable parts concerning the climatechanges‟ impacts. These impacts are even stronger in the arid and semi-arid areas whererangeland ecosystems are in critical conditions. Therefore, it is crucial to figure out theactual dynamics of climate variations on the rangelands. The aim of this research was todetermine climate changes in Khabr rangeland, Kerman, Iran. S...
متن کاملGrowth, yield and photosynthesis of Panicum maximum and Stylosanthes hamata under elevated CO2.
Plant height, biomass production, assimilatory functions and chlorophyll accumulation of Panicum maximum and Stylosanthes hamata in intercropping systems was influenced significantly under elevated CO2 (600 +/- 50 ppm) in open top chambers (OTCs). The plant height increased by 32.0 and 49.0% over the control in P. maximum and S. hamata respectively in intercropping system under elevated CO2 ove...
متن کاملInvestigating the effect of climate change on Increasing thetemperature and potential evapotranspiration using SDSM model in Ahvaz city
Climate change due to increasing the concentration of greenhouse gases (especially CO2) in the atmosphere causes changes in the rainfall regime, runoff rate, wind speed and solar radiation of atmosphere. In the present research, the maximum and minimum temperature parameters were simulated during the base period of 1979-2088 and two future periods of 1979-2070 and 2070-2090 using daily ...
متن کاملPredicted avian responses to bioenergy development scenarios in an intensive agricultural landscape
Conversion of native prairie to agriculture has increased food and bioenergy production but decreased wildlife habitat. However, enrollment of highly erodible cropland in conservation programs has compensated for some grassland loss. In the future, climate change and production of second-generation perennial biofuel crops could further transform agricultural landscapes and increase or decrease ...
متن کامل